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Abstract

To meet the challenge of the future deep-space program, which involves
extended manned space missions, an accurate and e�cient engineering code
for analyzing the shielding requirement against the high-energy galactic heavy

ions is needed. The HZETRN is a deterministic code developed at Langley
Research Center that is constantly under improvement both in physics and
numerical computation and is targeted for such use. One problem area con-

nected with the space-marching technique used in this code is the propagation
of the local truncation error. By improving the numerical algorithms for in-
terpolation, integration, and grid distribution formula, the e�ciency of the
code is increased by a factor of eight as the number of energy grid points is re-

duced. The numerical accuracy of better than 2 percent for a shield thickness
of 150 g/cm2 is found when a 45-point energy grid is used. The propagating
step size, which is related to the perturbation theory, is also reevaluated.

Introduction

As the space program proceeds into an era of
extended manned space operations, the shielding
from galactic heavy ions becomes a problem of ever-
increasing importance (ref. 1). The high-energy

heavy ions originating in deep space interact with
target nuclei resulting in energy degradation and nu-
clear fragmentations. These fragmentations produce

secondary and subsequent-generation reaction prod-
ucts that alter the elemental and isotopic composi-
tion of the transported radiation �elds. A realistic
estimate of 
ux in a critical organ of interest can be

made when the nuclear fragmentation data become
available as inputs to the galactic cosmic ray trans-
port code (HZETRN (ref. 2)), recently developed at

Langley Research Center.

As NASA places e�orts on the experimental pro-
gram to produce fragmentation data, the space ra-
diation transport codes including HZETRN are fur-

ther being improved, re�ned, and updated to meet
futuremission requirements. One such e�ort is to im-
prove the e�ciency and numerical accuracy of these

deterministic codes, such that the codes can easily
be used as engineering tools and will also accom-
modate future expansion for more sophistication in
physics. Recently, the work on the baryon trans-

port code (BRYNTRN) is an example in this area
(ref. 3). This code, as well as HZETRN, is based on
a space-marching formalism that calls special atten-

tion to the error propagation. An analysis made in
the study (ref. 3) showed that the propagated error
tends to grow with the marching steps to a maxi-
mum, but is proportional to the local error that can

be minimized by improving various numerical algo-

rithms and the grid generation. The results of these
modi�cations have substantially improved the accu-
racy and e�ciency of BRYNTRN.

Because HZETRN calculates the transport of the
galactic heavy ions through target materials, the
number of species and the range of energy considered

in this code are much larger than in BRYNTRN. For
this reason, the bene�t from the improvement of nu-
merical computation in HZETRN is expected to be
far greater than in BRYNTRN. In this report, the

description and testing of the changes to the compu-
tational procedures in HZETRN aswell as heavy-ion
transport theory are presented. The improvements

in e�ciency and accuracy are also evaluated.

Galactic Cosmic Ray Transport Method

Galactic Cosmic Ray Transport Theory

In moving through extended matter, heavy ions
lose energy through interaction with atomic electrons
along their trajectories. On occasion, they interact

violently with nuclei of the matter, producing ion
fragments moving in the forward direction and low-
energy fragments of the struck target nucleus. The
transport equations for the short-range target frag-

ments can be solved in closed form in terms of colli-
sion density (ref. 4). Hence, the projectile fragment
transport is the interesting unsolved problem. In pre-

vious work, the projectile ion fragments were treated
as if all went straight ahead (ref. 5). The straight-
ahead approximation is found to be quite accurate
for the nearly isotropic cosmic ray 
uence (ref. 4).
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With the straight-ahead approximation and the target secondary fragments neglected (refs. 4 and 5), the

transport equation may be written as
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where �j(x;E) is the 
ux of ions of type j with atomic mass Aj at x moving along the x-axis at energy E in

units of MeV/amu, �j is the corresponding macroscopic nuclear absorption cross section, ~Sj(E) is the change

in E per unit distance, and mjk is the multiplicity of ion j produced in collision by ion k. The corresponding

nucleon transport equation (refs. 3, 6, and 7) is
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The mjk , �j are assumed energy independent in equation (1) and the full energy dependence is retained in

equation (2). The solution to equations (1) and (2) is to be found subject to boundary speci�cation at x = 0

and arbitrary E as

�j(0; E)= Fj(E) (3)

Usually Fj(E) is called the incident beam spectrum.

It follows from Bethe's theory (ref. 8) that

~Sj(E) =
ApZ

2
j

AjZ2
p

~Sp(E) (4)

and holds for all energies above 100 keV/amu provided the ions remain fully stripped. The range of the ion is

given as

Rj(E) =

Z E

0

dE0

~Sj(E0)
(5)

It follows that
Z2
j

Aj
Rj(E)=

Z2
p

Ap
Rp(E) (6)

The subscript p refers to proton. Equation (6) is quite accurate at high energy and only approximately true at

low energy because of electron capture by the ion that e�ectively reduces its charge (ref. 9), higher order Born

corrections to Bethe's theory (ref. 10), and nuclear stopping at the lowest energies (refs. 11 and 12). Herein,

the parameter �j is de�ned as

�jRj(E) = �kRk(E) (7)

so that

�j = Z2
j =Aj (8)

Equations (6) to (8) are used in the subsequent development and the energy variation in �j is neglected.

A method of solution is now discussed. For the purpose of solving equation (1), de�ne the coordinates

�j � x�Rj(E) (9)

�j � x+ Rj(E) (10)
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where �j varies along the particle path and �j is constant along the particle trajectory. The new 
uence

functions are taken as

�j(�j; �j)� ~Sj(E)�j(x;E) =  j(x; rj) (11)

��k(�j; �j) � �k(�k; �k) (12)

where

�j + �j = �k + �k (13)

�j � �j =
�k
�j

(�k � �k) (14)

and rj = Rj(E). Under this coordinate mapping, equation (1) becomes
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where �j are assumed to be energy independent. There is a small variation in �j (�20 percent), which must

eventually be taken into account. Solving equation (15) by using line integration with an integrating factor
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With equation (11) one may show
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Furthermore, it is easy to show that
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where h is the step size in the x direction.

It is clear from equation (18) that

 k(x+ h� z; rk) = e��k(h�z)  k(x; rk + h)+ O(h � z) (20)

which upon substitution into equation (19) yields

 j(x+ h; rj) = e��jh  j(x; rj +h)+

Z h
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X
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which is correct to order h2. This expression may be further approximated by

 j(x+ h; rj) = e��jh  j(x; rj +h)+
X
k

mjk �k
�j
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(22)

which is accurate to O
��
�k � �j

�
h
�
. Equation (22) is the basis of the galactic cosmic ray (GCR) transport

code GCRTRN (refs. 13 to 15). A few years ago, GCRTRN and the baryon transport code (BRYNTRN) were

coupled together as a new code (HZETRN) which e�ectively solves equation (2) by adding a heavy ion collision

source of nucleons to the right-hand side of the equation. Equation (22) provides the propagating algorithm

for the heavy ions. The corresponding propagating procedure for the nucleons is given as (refs. 3 and 6)

 (x+h; r) � e��h (x; r +h)+ e��h
Z h

0
dz

Z
1

r
dr 0�f(r + z; r 0+ z)  (x; r0 + h) (23)

with the order of h2.

There are several quantities of interest that are now given. The integral 
uence is given as

�j(x; >E) =

Z
1

Rj(E)
 j(x; r) dr (24)

The energy absorption per gram is

Dj(x;>E) =

Z
1

E
Aj j[x;Rj(E)] dE (25)

with the dose equivalent given as

Hj(x;>E) = Aj

Z
1

E
QF j [x; Rj(E)] dE (26)

where QF is the quality factor. These quantities are used in shield design studies for protection against galactic

cosmic rays.

Numerical Procedure

The secondary particle production term of the propagation algorithm for nucleons in equation (23) has been

further reduced to a form that can be implemented with ease for numerical integration. The details of the

form and its validity have been discussed elsewhere (ref. 6) and will not be repeated here. For the heavy ions,

the secondary production term (the second term on the right side of eq. (22)) does not involve any integration ;

however, the interpolation of the transformed 
uence function is based on the independent variable rk , which is

di�erent from rj , the range of ions of type j given at the left side of the equation. To circumvent the problem,

the equation is further modi�ed. Recall the de�nition of ~Sj(E) with E given in units of MeV/amu

~Sj(E) = ~Sj(Ej=Aj) = �

�(Ej=Aj)

�x
= �

1

Aj

�Ej

�x
=

1

Aj
Sj(Ej) (27)

with

Sj(Ej) = Z2
j Sp(Ej=Aj) (28)

where Sp is the proton stopping power and Ej is the energy in MeV of ions of type j. It follows that

~Sj(E) =
1

Aj
Z2
j Sp(Ej=Aj)� �jSp(Ep) (29)
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where

Ep = Ej=Aj (30)

Rewriting equation (11) as

 j(x; rj) �
~Sj(E) �j(x; E) = �j Sp(E) �j(x;E) (31)

we can de�ne the new 
uence function
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with r = rp = �j rj, where
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Equation (22) now becomes
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so that there is only one single de�nition of range that is related to energy. The equation can now be solved

by setting up the r (proton range) grid and marching the solution from x = 0 by steps of h to the desired

thickness.

Error Propagation

In considering how errors are propagated in the use of equation (34), the error is introduced locally by

calculating  0j(x; r + �jh) over the range (energy) grid. Limiting our current analysis to the �rst term of

equation (34), it is de�ned at each range grid ri that

 
0
j(x+h; ri) = e

��j h  
0
j(x; ri + �jh) (35)

We denote the truncation error �i introduced in the interpolation procedure to the interpolated value,  0
jint,

as

 0
j
(x; ri + �jh)=  0

j int(x; ri + �jh)+ �i(h) (36)

After the mth step from the boundary the numerical solution is
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because h�j � 1. Clearly the propagated error on the mth step is bound by

�prp(h) <
�(h)

h�j

h
1 � e��jmh

i
(40)
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where �(h) is the maximum error per step. With the
increasing value of m, the propagate d error grows

each step to a maximum value of �(h)=h�j . Because
the increase of h value is limited by the perturbation
theory, reducing the local truncation error is the only
viable approach left for reducing the propagated error

to a desired level. The same consideration may be
applied for the second term of equation (34), as the
terms are of similar nature.

Numerical Algorithms

The error analysis shown in the previous section
has concluded that to e�ectively reduce the level of

propagated error, the local truncated error must be
reduced. There are three basic numerical algorithms
that are involved in solving equations (23) to (26) and
(34): interpolation, integration, and grid generation.

The integration scheme does not a�ect the error
propagation for the heavy-ion transport, but does
a�ect the nucleons and the dose calculations. The
choice of a grid distribution that is interrelated to

the interpolation and integration scheme can increase
the e�ciency of the code if the number of grids can
be reduced.

The interpolation scheme to be used here is the
third-order Lagrange method as used successfully in
the work for improving BRYNTRN (ref. 3). With
the four neighboring interpolating grids (data points)

placed evenly on both sides of the interpolated point,
the error will tend to be the smallest in the middle
interval of all the data points if the grid distribution

is rather uniform (ref. 16). The choice of a much
higher order Lagrange method will substantially de-
crease the e�ciency of the code, because there are
more than 10 interpolation calls for each single en-

ergy point at each step. Other interpolation methods
such as a cubic spline were considered but discarded.
The splines are, in general, more accurate. However,

their characteristic large excursions (oscillations) can
result in erroneous, unpredictable solutions.

The same procedure for numerical integration
used for the improved BRYNTRN (ref. 3) will also

be used here for HZETRN. It is based on the com-
pound quadrature formulation summing over all the
subintervals between the grids with the midpoint

evaluated by making use of the improved interpola-
tion procedure mentioned above. A simple numerical
method such as Simpson's rule is used to integrate for
the subintervals.

There are three binding conditions that dictate
how the grids should be distributed. The �rst is the
shape of the input spectrum. Because the galactic

cosmic ray 
uences are several orders of magnitude

larger at the lower energy end (ref. 17), the loga-
rithmic scale will be used for the energy or range

coordinate as was done in reference 3. The second
condition is related to the choice of the interpolation
method that requires the four neighboring grids to
be as uniformly spaced (on logarithm scale) as possi-

ble so that the interpolation error can be minimized.
Because the interpolation is performed on the range
grid rather than on the energy grid, a uniform grid

distribution on a logarithm of range r is desired. The
third is related to the e�ciency of the code that is
found to increase almost quadratically with the de-
crease of grid points. With the uniform grid points

on logarithm r scale as the basic structure, the distri-
bution can further be modi�ed to reduce the number
of points in the region in which the information is not

propagating through the steps. For BRYNTRN, it is
the region below rmin + h, or approximately 1 g/cm2

because rmin � 1 and assuming h = 1 g/cm2 (ref. 3).
The same applies for HZETRN, although the inter-

polation is now at rmin + �jh; where �j is always
equal to or much greater than 1.

Results and Discussion

In a previous study (ref. 3), the new grid distribu-
tion with the number of grid points N equals 30 was

found satisfactory for BRYNTRN, with the calcu-
lated dose of 5 percent accuracy for a shield thickness
of 150 g/cm2. Because the galactic cosmic rays are

much harder than the solar 
are protons, the upper
limit of the energy range is usually taken to be about
50 GeV as compared with a few GeV for solar pro-
tons. Thus, more grid points are used for HZETRN.

Testswere performed to determine the di�erences be-
tween the interpolated  0k(0; r+�jh) and the analyt-
ical results using the new interpolation method and

grid distribution with N = 45, for all the j 's and k's
where j < k. Samples of the results are displayed in
�gures 1 to 6. The overall error has been found to be
less than 0.2 percent, with the particular grid gener-

ation formula purposely adjusted so that the larger
errors are absorbed at the low-energy region for r less
than rmin + �jh, where h = 1 g/cm2. The errors re-

ported here are far less than the interpolation error
reported in reference 3 for BRYNTRN.

To test the convergence of the solution from the

improved HZETRN (including the new integration
procedure), the absorbed doses in tissue behind var-
ious thicknesses of aluminum shield exposed to the
galactic cosmic rays at solar minimum are calculated

with N = 45, 60, and 90. The shield thickness
is varied up to 150 g/cm2 as indicated in �gure 7.
The doses from the heavy ions decrease signi�cantly

through the shield as they are fragmented by the
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target nuclei. The doses from the nucleons increase
rapidly to a maximum as a result of such fragmenta-

tion and then gradually decrease. The relative errors
in the absorbed dose for 45 grids or 60 grids compared
with the dose for 90 grids are plotted in �gures 8(a)
and 8(b). The error for the proton dose increases

with the shield thickness (see �g. 8(a)) as was ex-
pected from the analysis of error propagation. There
is some indication of oscil lation for the neutron com-

ponent (see �g. 8(b)), which was pointed out earlier
(ref. 3) to be the result of the rapidly varying cross-
section data for neutrons at low energy. The errors
for the other component are found to be insigni�-

cant compared with those for the nucleons. Thus,
the maximum error is 2 percent for 45 grids and de-
creases to less than 1 percent for 60 grids, showing

good convergence.

Another convergence issue that needs to be ad-
dressed is the perturbation theory used in the trans-
port theory. The perturbation theory requires

�jh� 1. Because �j is on the order of 0.01, we usu-

ally take h = 1 g/cm2. Table 1 shows the e�ect
of step size on some of the calculated doses, with

h = 0:5 and 1 g/cm2. The di�erences between these
two step sizes are insigni�cantly small, therefore,
h = 1 g/cm2 is retained for HZETRN. The overall
e�ciency for this code is improved about eight times

as the grid points are reduced from 160 to 45, with an
accuracy of 2 percent for the large shield thickness.
A typical run time for producing the results shown

in �gure 7 is about 5000 sec on a CYBER 800 series
computer.

Concluding Remarks

The e�ciency of HZETRN (a galactic cosmic ray
transport code) has been improved by approximately
a factor of eight. The numerical algorithms for

interpolation, integration, and energy grid generation
were modi�ed such that the number of grid points
needed was reduced from 160 to 45 points. The error

in dose calculation for 45 grid points was determined
to be within 2 percent by a convergence test. The
adequacy of the step size, which is related to the
perturbation theory, was also examined.

NASA Langley Research Center

Hampton, VA 23665-5225

February 4, 1992
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Table 1. E�ect of Step Size on Calculated Doses Through

Various Thicknesses of Aluminum Shield

Aluminum

shield Neutron dose, Gy Proton dose, Gy Alpha particle dose, Gy

thickness, Step size Step size Step size Step size Step size Step size

g/cm2 = 0.5 g/cm2 = 1 g/cm2 = 0.5 g/cm2 = 1 g/cm2 = 0.5 g/cm2 = 1 g/cm2

5 6.3599E-3 6.3315E-3 8.2623E-2 8.2375E-2 2.4349E-2 2.4349E-2

10 1.1232E-2 1.1181E-2 9.1011E-2 9.0682E-2 2.1400E-2 2.1400E-2

15 1.4942E-2 1.4873E-2 9.4520E-2 9.4148E-2 1.8784E-2 1.8784E-2

20 1.7738E-2 1.7655E-2 9.5463E-2 9.5068E-2 1.6499E-2 1.6499E-2
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